Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38394645

RESUMO

To protect vulnerable populations during heat waves, public health agencies recommend maintaining indoor air temperature below ∼24-28 °C. While we recently demonstrated that maintaining indoor temperatures ≤26 °C mitigates the development of hyperthermia and cardiovascular strain in older adults, the cellular consequences of prolonged indoor heat stress are poorly understood. We therefore evaluated the cellular stress response in 16 adults (six females) aged 66-78 years during 8 h rest in ambient conditions simulating homes maintained at 22 °C (control) and 26 °C (indoor temperature upper limit proposed by health agencies), as well as non-air-conditioned domiciles during hot weather and heat waves (31 and 36 °C, respectively; all 45% relative humidity). Western blot analysis was used to assess changes in proteins associated with the cellular stress response (autophagy, apoptosis, acute inflammation, and heat shock proteins) in peripheral blood mononuclear cells harvested prior to and following exposure. Following 8 h exposure, no cellular stress response-related proteins differed significantly between the 26 and 22 °C conditions (all, P ≥ 0.056). By contrast, autophagy-related proteins were elevated following exposure to 31 °C (p62: 1.5-fold; P = 0.003) and 36 °C (LC3-II, LC3-II/I, p62; all ≥2.0-fold; P ≤ 0.002) compared to 22 °C. These responses were accompanied by elevations in apoptotic signaling in the 31 and 36 °C conditions (cleaved-caspase-3: 1.8-fold and 3.7-fold, respectively; P ≤ 0.002). Furthermore, HSP90 was significantly reduced in the 36 °C compared to 22 °C condition (0.7-fold; P = 0.014). Our findings show that older adults experience considerable cellular stress during prolonged exposure to elevated ambient temperatures and support recommendations to maintain indoor temperatures ≤26 °C to prevent physiological strain in heat-vulnerable persons.

2.
Environ Health Perspect ; 132(2): 27003, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38329752

RESUMO

BACKGROUND: Health agencies recommend that homes of heat-vulnerable occupants (e.g., older adults) be maintained below 24-28°C to prevent heat-related mortality and morbidity. However, there is limited experimental evidence to support these recommendations. OBJECTIVE: To aid in the development of evidence-based guidance on safe indoor temperatures for temperate continental climates, we evaluated surrogate physiological outcomes linked with heat-related mortality and morbidity in older adults during simulated indoor overheating. METHODS: Sixteen older adults [six women; median age: 72 y, interquartile range (IQR): 70-73 y; body mass index: 24.6 (IQR: 22.1-27.0) kg/m2] from the Ottawa, Ontario, Canada, region (warm summer continental climate) completed four randomized, 8-h exposures to conditions experienced indoors during hot weather in continental climates (e.g., Ontario, Canada; 64 participant exposures). Ambient conditions simulated an air-conditioned environment (22°C; control), proposed indoor temperature upper limits (26°C), and temperatures experienced in homes without air-conditioning (31°C and 36°C). Core temperature (rectal) was monitored as the primary outcome; based on previous recommendations, between-condition differences >0.3°C were considered clinically meaningful. RESULTS: Compared with 22°C, core temperature was elevated to a meaningful extent in 31°C [+0.7°C; 95% confidence interval (CI): 0.5, 0.8] and 36°C (+0.9°C; 95% CI: 0.8, 1.1), but not 26°C (+0.2°C, 95% CI: 0.0, 0.3). Increasing ambient temperatures were also associated with elevated heart rate and reduced arterial blood pressure and heart rate variability at rest, as well as progressive impairments in cardiac and blood pressure responses to standing from supine. DISCUSSION: Core temperature and cardiovascular strain were not appreciably altered following 8-h exposure to 26°C but increased progressively in conditions above this threshold. These data support proposals for the establishment of a 26°C indoor temperature upper limit for protecting vulnerable occupants residing in temperate continental climates from indoor overheating. https://doi.org/10.1289/EHP13159.


Assuntos
Sistema Cardiovascular , Coração , Idoso , Feminino , Humanos , Estudos Cross-Over , Ontário , Temperatura , Masculino
3.
Am J Physiol Regul Integr Comp Physiol ; 326(1): R53-R65, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955132

RESUMO

To maintain heat balance during exercise, humans rely on skin blood flow and sweating to facilitate whole body dry and evaporative heat exchange. These responses are modulated by the rise in body temperature (thermal factors), as well as several nonthermal factors implicated in the cardiovascular response to exercise (i.e., central command, mechanoreceptors, and metaboreceptors). However, the way these nonthermal factors interact with thermal factors to maintain heat balance remains poorly understood. We therefore used direct calorimetry to quantify the effects of dose-dependent increases in the activation of these nonthermal stimuli on whole body dry and evaporative heat exchange during dynamic exercise. In a randomized crossover design, eight participants performed 45-min cycling at a fixed metabolic heat production (200 W/m2) in warm, dry conditions (30°C, 20% relative humidity) on four separate occasions, differing only in the level of lower-limb compression applied via bilateral thigh cuffs pressurized to 0, 30, 60, or 90 mmHg. This model provoked increments in nonthermal activation while ensuring the heat loss required to balance heat production was matched across trials. At end-exercise, dry heat loss was 2 W/m2 [1, 3] lower per 30-mmHg pressure increment (P = 0.006), whereas evaporative heat loss was elevated 5 W/m2 [3, 7] with each pressure increment (P < 0.001). Body heat storage and esophageal temperature did not differ across conditions (both P ≥ 0.600). Our findings indicate that the nonthermal factors engaged during exercise exert dose-dependent, opposing effects on whole body dry and evaporative heat exchange, which do not significantly alter heat balance.NEW & NOTEWORTHY To maintain heat balance during exercise, humans rely on skin blood flow and sweating to facilitate dry and evaporative heat exchange. These responses are modulated by body temperatures (thermal factors) and several nonthermal factors (e.g., central command, metaboreceptors), although the way thermal and nonthermal factors interact to regulate body temperature is poorly understood. We demonstrate that nonthermal factors exert dose-dependent, opposing effects on dry and evaporative heat loss, without altering heat storage during dynamic exercise.


Assuntos
Regulação da Temperatura Corporal , Temperatura Alta , Humanos , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Sudorese , Termogênese/fisiologia
4.
J Appl Physiol (1985) ; 136(2): 408-420, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153847

RESUMO

Older adults are at greater risk of heat-related morbidity and mortality during heat waves, which is commonly linked to impaired thermoregulation. However, little is known about the influence of increasing age on the relation between thermal strain and perceptual responses during daylong heat exposure. We evaluated thermal and perceptual responses in 20 young (19-31 yr) and 39 older adults (20 with hypertension and/or type 2 diabetes; 61-78 yr) resting in the heat for 9 h (heat index: 37°C). Body core and mean skin temperature areas under the curve (AUC, hours 0-9) were assessed as indicators of cumulative thermal strain. Self-reported symptoms (68-item environmental symptoms questionnaire) and mood disturbance (40-item profile of mood states questionnaire) were assessed at end-heating (adjusted for prescores). Body core temperature AUC was 2.4°C·h [1.0, 3.7] higher in older relative to young adults (P < 0.001), whereas mean skin temperature AUC was not different (-0.5°C·h [-4.1, 3.2] P = 0.799). At end-heating, self-reported symptoms were not different between age groups (0.99-fold [0.80, 1.23], P = 0.923), with or without adjustment for body core or mean skin temperature AUC (both P ≥ 0.824). Mood disturbance was 0.93-fold [0.88, 0.99] lower in older, relative to young adults (P = 0.031). Older adults with and without chronic health conditions experienced similar thermal strain, yet those with these conditions reported lower symptom scores and mood disturbance compared with young adults and their age-matched counterparts (all P ≤ 0.026). Although older adults experienced heightened thermal strain during the 9-h heat exposure, they did not experience greater self-reported symptoms or mood disturbance relative to young adults.NEW & NOTEWORTHY Despite experiencing greater cumulative thermal strain during 9 h of passive heat exposure, older adults reported similar heat-related symptoms and lower mood disturbance than young adults. Furthermore, self-reported symptoms and mood disturbance were lower in older adults with common age-associated health conditions than young adults and healthy age-matched counterparts. Perceptual responses to heat in older adults can underestimate their level of thermal strain compared with young adults, which may contribute to their increased heat vulnerability.


Assuntos
Diabetes Mellitus Tipo 2 , Temperatura Alta , Adulto Jovem , Humanos , Idoso , Autorrelato , Temperatura Cutânea , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal
5.
J Appl Physiol (1985) ; 135(5): 969-976, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707866

RESUMO

Heat waves can cause dangerous elevations in body temperature that can compromise cellular function and increase the risk of heat stroke and major cardiovascular events. Visiting a cooling center or other air-conditioned location is commonly recommended by health agencies to protect heat-vulnerable older persons but the associated cellular effects remain underexplored. We evaluated cellular stress responses in peripheral blood mononuclear cells (PBMC) from 19 older adults [71 (SD 2) yr; 9 females] before and after a 9-h heat exposure [40.3°C and 9.3% relative humidity (RH)], with participants moved to a cool room (∼23°C) for hours 5 and 6 (cooling group). Responses were compared with 17 older adults [72 (4) yr; 7 females] who remained in the heat for the entire 9 h (control group). Changes in proteins associated with autophagy, apoptotic signaling, acute inflammation, and the heat shock response (HSR) were assessed via Western blot. Although both groups experienced similar elevations in physiological strain before the cooling center intervention, brief cooling resulted in stark albeit transient reductions in core temperature and heart rate. At end-exposure, autophagy proteins LC3-II and p62 were elevated 1.9-fold [95% CI: 1.2, 2.8] and 2.3-fold [1.4, 3.8], respectively, in the control group relative to cooling group. This was paired with a 2.8-fold [1.6, 4.7] greater rise in apoptotic protein cleaved-caspase-3 in the control group compared with the cooling group. Our findings indicate that 2 h of ambient cooling midway through a 9-h simulated heat wave may preserve autophagy and mitigate heat-induced cellular stress in older adults.NEW & NOTEWORTHY Heat waves can lead to dangerous elevations in body temperature, increasing the risk of life-threatening health conditions. Visiting a cooling center or other air-conditioned location is commonly recommended to protect heat-vulnerable older persons, although the effects on the cellular stress response remain unknown. We found that 2 h of ambient cooling midway through a 9 h simulated heat wave preserves autophagy, a vital cellular survival mechanism, and mitigates accompanying pathways of cellular stress in older adults.


Assuntos
Transtornos de Estresse por Calor , Leucócitos Mononucleares , Feminino , Humanos , Idoso , Idoso de 80 Anos ou mais , Temperatura Alta , Temperatura Baixa , Temperatura Corporal/fisiologia , Autofagia , Regulação da Temperatura Corporal/fisiologia
6.
Appl Physiol Nutr Metab ; 48(11): 863-869, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37556854

RESUMO

TAKE-HOME MESSAGE: During short bouts of light-to-vigorous exercise in the heat, controlled and uncomplicated hypertension did not significantly modulate HRV in physically active individuals. These findings can be used to refine guidance on use of exercise for hypertension management in the heat.


Assuntos
Transtornos de Estresse por Calor , Hipertensão , Humanos , Frequência Cardíaca , Coração , Hipertensão/terapia , Sistema Nervoso Autônomo , Resposta ao Choque Térmico
7.
J Appl Physiol (1985) ; 135(3): 673-687, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439239

RESUMO

Aging is associated with an elevated risk of heat-related mortality and morbidity, attributed, in part, to declines in thermoregulation. However, comparisons between young and older adults have been limited to brief exposures (1-4 h), which may not adequately reflect the duration or severity of the heat stress experienced during heat waves. We therefore evaluated physiological responses in 20 young (19-31 yr; 10 females) and 39 older (61-78 yr; 11 females) adults during 9 h of rest at 40°C and 9% relative humidity. Whole body heat exchange and storage were measured with direct calorimetry during the first 3 h and final 3 h. Core temperature (rectal) was monitored continuously. The older adults stored 88 kJ [95% confidence interval (CI): 29, 147] more heat over the first 3 h of exposure (P = 0.006). Although no between-group differences were observed after 3 h [young: 37.6°C (SD 0.2°C) vs. older: 37.7°C (0.3°C); P = 0.216], core temperature was elevated by 0.3°C [0.1, 0.4] (adjusted for baseline) in the older group at hour 6 [37.6°C (0.2°C) vs. 37.9°C (0.2°C); P < 0.001] and by 0.2°C [0.0, 0.3] at hour 9 [37.7°C (0.3°C) vs. 37.8°C (0.3°C)], although the latter comparison was not significant after multiplicity correction (P = 0.061). Our findings indicate that older adults sustain greater increases in heat storage and core temperature during daylong exposure to hot dry conditions compared with their younger counterparts. This study represents an important step in the use of ecologically relevant, prolonged exposures for translational research aimed at quantifying the physiological and health impacts of hot weather and heat waves on heat-vulnerable populations.NEW & NOTEWORTHY We found greater increases in body heat storage and core temperature in older adults than in their younger counterparts during 9 h of resting exposure to hot dry conditions. Furthermore, the age-related increase in core temperature was exacerbated in older adults with common heat-vulnerability-linked health conditions (type 2 diabetes and hypertension). Impairments in thermoregulatory function likely contribute to the increased risk of heat-related illness and injury seen in older adults during hot weather and heat waves.


Assuntos
Envelhecimento , Regulação da Temperatura Corporal , Envelhecimento/fisiologia , Adulto , Pessoa de Meia-Idade , Idoso , Humanos , Masculino , Feminino , Hemodinâmica , Temperatura Alta , Temperatura Corporal , Fatores de Tempo , Fatores Sexuais , Diabetes Mellitus Tipo 2/complicações , Hipertensão/complicações , Resposta ao Choque Térmico
8.
J Appl Physiol (1985) ; 135(3): 688-695, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471211

RESUMO

With rising global temperatures, heat-related mortality is increasing, particularly among older adults. Although this is often attributed to declines in thermoregulatory function, little is known regarding the effect of age on the cellular processes associated with mitigating heat-induced cytotoxicity. We compared key components of the cellular stress response in 19 young (19-31 yr; 10 female) and 37 older adults (61-78 yr; 10 female) during 9 h of heat exposure (40°C, 9% relative humidity). Mean body temperature (Tbody) was calculated from core and skin temperatures. Changes in proteins associated with autophagy, apoptotic signaling, acute inflammation, and the heat shock response were assessed via Western blot in peripheral blood mononuclear cells harvested before and after exposure. Tbody increased by 1.5 (SD 0.3)°C and 1.7 (0.3)°C in the young and older adults, respectively. We observed similar elevations in autophagy-related proteins (LC3-II and LC3-II/I) in young and older adults (both P ≥ 0.121). However, the older adults displayed signs of autophagic dysfunction, evidenced by a 3.7-fold [95% CI: 2.4, 5.6] greater elevation in the selective autophagy receptor p62 (P < 0.001). This was paired with elevations in apoptotic responses, with a 1.7-fold [1.3, 2.3] increase in cleaved caspase-3 in the older relative to young adults (P < 0.001). Older adults also exhibited diminished heat shock protein 90 responses (0.7-fold [0.5, 0.9] vs. young, P = 0.011) and, at any given level of thermal strain (Tbody area under the curve), elevated tumor necrosis factor-α (1.5-fold [1.0, 2.5] vs. young, P = 0.008). Attenuated autophagic responses may underlie greater vulnerability to heat-induced cellular injury in older adults.NEW & NOTEWORTHY We demonstrate for the first time that peripheral blood mononuclear cells from older adults exhibit signs of autophagic impairments during daylong (9 h) heat exposure relative to their younger counterparts. This was paired with greater apoptotic signaling and inflammatory responses, and an inability to stimulate components of the heat shock response. Thus, autophagic dysregulation during prolonged heat exposure may contribute to age-related heat vulnerability during hot weather and heat waves.


Assuntos
Regulação da Temperatura Corporal , Leucócitos Mononucleares , Humanos , Adulto Jovem , Feminino , Idoso , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal , Temperatura Cutânea , Autofagia , Resposta ao Choque Térmico
9.
Environ Health Perspect ; 131(6): 67003, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37262028

RESUMO

BACKGROUND: Health agencies, including the U.S. Centers for Disease Control and Prevention and the World Health Organization, recommend that heat-vulnerable older adults without home air-conditioning should visit cooling centers or other air-conditioned locations (e.g., a shopping mall) during heat waves. However, experimental evidence supporting the effectiveness of brief air-conditioning is lacking. OBJECTIVE: We evaluated whether brief exposure to an air-conditioned environment, as experienced in a cooling center, was effective for limiting physiological strain in older adults during a daylong laboratory-based heat wave simulation. METHODS: Forty adults 64-79 years of age underwent a 9-h simulated heat wave (heat index: 37°C) with (cooling group, n=20) or without (control group, n=20) a cooling intervention consisting of 2-h rest in an air-conditioned room (∼23°C, hours 5-6). Core and skin temperatures, whole-body heat exchange and storage, cardiovascular function, and circulating markers of acute inflammation were assessed. RESULTS: Core temperature was 0.8°C (95% CI: 0.6, 0.9) lower in the cooling group compared with the control group at the end of the cooling intervention (p<0.001; hour 6), and it remained 0.3°C (95% CI: 0.2, 0.4) lower an hour after returning to the heat (p<0.001; hour 7). Despite this, core temperatures in each group were statistically equivalent at hours 8 and 9, within ±0.3°C (p≤0.005). Cooling also acutely reduced demand on the heart and improved indices of cardiovascular autonomic function (p≤0.021); however, these outcomes were not different between groups at the end of exposure (p≥0.58). DISCUSSION: Brief air-conditioning exposure during a simulated heat wave caused a robust but transient reduction in core temperature and cardiovascular strain. These findings provide important experimental support for national and international guidance that cooling centers are effective for limiting physiological strain during heat waves. However, they also show that the physiological impacts of brief cooling are temporary, a factor that has not been considered in guidance issued by health agencies. https://doi.org/10.1289/EHP11651.


Assuntos
Temperatura Alta , Temperatura Cutânea , Temperatura Baixa
10.
Am J Physiol Heart Circ Physiol ; 325(1): H66-H76, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172076

RESUMO

Endurance exercise induces cardiovascular adaptations; the athletic phenotypes of the heart and arteries are well characterized, but few studies have investigated the effects of chronic exercise on the venous system. The aim of this study was to describe the anatomy and function of lower-limb deep and superficial veins in athletes compared with controls. Endurance-trained athletes and untrained controls (13 males, 7 females per group) were examined using ultrasound to measure vein diameter and flow, and air plethysmography to assess calf venous volume dynamics and muscle pump function at rest, during a single step, ambulation (10 steps) and after acute treadmill exercise (30 min ∼80% age-predicted heart rate maximum). Diameters of three of the seven deep veins assessed were larger in athletes (P ≤ 0.0167) and more medial calf perforators were detectable (5 vs. 3, P = 0.0039). Calf venous volume was 22% larger in athletes (P = 0.0057), and calf muscle pump ejection volume and ambulatory venous volume after 10 steps were both greater in athletes (20 and 46% respectively, P ≤ 0.0482). Following acute exercise, flow recovery profiles in deep and superficial veins draining the leg were not different between groups, despite athletes performing approximately four times more work. After exercise, venous volume and ejection volume were reduced by ∼20% in athletes with no change in controls (interaction, P ≤ 0.0372) and although ambulatory venous volume reduced, this remained greater in athletes. These findings highlight venous adaptations that compensate for the demands of regular endurance exercise, all of which are suited to enhance flow through the lower-limb venous system.NEW & NOTEWORTHY Although much literature exists describing adaptations to the heart and arteries in response to endurance exercise training, less is known about the effects on the venous system. Characteristics of "the athlete's vein" described here include deep and perforator vein remodeling, improved drainage, and greater calf venous volume at rest and on calf muscle pump activation. Following exercise, athletes demonstrated prompt flow recovery and appropriate volume reductions, and veins beneficially adapt to better tolerate the demands of regular physical activity.


Assuntos
Extremidade Inferior , Veias , Masculino , Feminino , Humanos , Veias/diagnóstico por imagem , Extremidade Inferior/irrigação sanguínea , Ultrassonografia , Pletismografia , Atletas , Resistência Física
11.
Microvasc Res ; 146: 104470, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549373

RESUMO

OBJECTIVES: Evaluate reliability of laser-Doppler flowmetry derived cutaneous vasodilation on the upper and lower limbs during gradual local heating. METHODS: In twenty-eight young adults (21 (SD 3) years, 14 females), absolute cutaneous vascular conductance (CVCabs) and CVC normalized to maximum vasodilation at 44 °C (%CVCmax) were assessed at two adjacent sites on each of the forearm and calf during gradual local skin heating (33-42 °C at 1 °C·5 min-1) for two identical trials (∼1 week apart). Responses were assessed for baseline, the steady-state heating plateau at 42 °C and the span (i.e. plateau-baseline). RESULTS: Between-day reliability was characterized as measurement consistency across trials. Within-day reliability was characterized as within-limb measurement consistency across adjacent skin sites. Between- and within-day absolute reliability (coefficient of variation) generally improved with heating, from poor (>25 %) at baseline to good (<10 %) for %CVCmax and moderate (10-25 %) for CVCabs for plateau and span. However, relative reliability (intraclass correlation coefficient) was generally not acceptable (<0.70) for any condition. Responses were generally consistent for females and males and there were no major forearm and calf differences. CONCLUSIONS: Consistency of CVC estimates improved during gradual local heating with negligible limb and sex differences, which are important considerations for experimental design and interpretation.


Assuntos
Antebraço , Vasodilatação , Humanos , Masculino , Feminino , Adulto Jovem , Vasodilatação/fisiologia , Antebraço/irrigação sanguínea , Fluxometria por Laser-Doppler , Calefação , Reprodutibilidade dos Testes , Pele/irrigação sanguínea , Fluxo Sanguíneo Regional
12.
Physiol Rep ; 10(7): e15250, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35411704

RESUMO

Aging is associated with attenuated sweat gland function, which has been suggested to occur in a peripheral-to-central manner. However, evidence supporting this hypothesis remains equivocal. We revisited this hypothesis by evaluating the sweat rate across the limbs and trunk in young and older men during whole-body, passive heating. A water-perfused suit was used to raise and clamp esophageal temperature at 0.6°C (low-heat strain) and 1.2°C (moderate-heat strain) above baseline in 14 young (24 (SD 5) years) and 15 older (69 (4) years) men. Sweat rate was measured at multiple sites on the trunk (chest, abdomen) and limbs (biceps, forearm, quadriceps, calf) using ventilated capsules (3.8 cm2 ). Sweat rates, expressed as the average of 5 min of stable sweating at low- and moderate-heat strain, were compared between groups (young, older) and regions (trunk, limbs) within each level of heat strain using a linear mixed-effects model with nested intercepts (sites nested within region nested within participant). At low-heat strain, the age-related reduction in sweat rate (older-young values) was greater at the trunk (0.65 mg/cm2 /min [95% CI 0.44, 0.86]) compared to the limbs (0.42 mg/cm2 /min [0.22, 0.62]; interaction: p = 0.010). At moderate-heat strain, sweat rate was lower in older compared to young (main effect: p = 0.025), albeit that reduction did not differ between regions (interaction: p = 0.888). We conclude that, contrary to previous suggestions, the age-related decline in sweat rate was greater at the trunk compared to the limbs at low-heat strain, with no evidence of regional variation in that age-related decline at moderate-heat strain.


Assuntos
Transtornos de Estresse por Calor , Sudorese , Idoso , Resposta ao Choque Térmico , Temperatura Alta , Humanos , Masculino , Suor , Glândulas Sudoríparas
13.
Appl Physiol Nutr Metab ; 47(7): 711-724, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35259026

RESUMO

To mitigate excessive rises in core temperature (>1 °C) in non-heat acclimatized workers, the American Conference of Governmental Industrial Hygienists (ACGIH) provides heat stress limits (Action Limit Values; ALV), defined by the wet-bulb globe temperature (WBGT) and a worker's metabolic rate. However, since these limits are based on data from men, their suitability for women remains unclear. We therefore assessed core temperature and heart rate in men (n = 19; body surface area-to-mass ratio: 250 (SD 17) cm2/kg) and women (n = 15; body surface area-to-mass ratio: 268 (SD 24) cm2/kg) aged 18-45 years during 180 min of walking at a moderate metabolic rate (200 W/m2) in WBGTs below (16 and 24 °C) and above (28 and 32 °C) ACGIH ALV. Sex did not significantly influence (i) rises in core temperature, irrespective of WBGT, (ii) the proportion of participants with rises in core temperature >1 °C in environments below ACGIH limits, and (iii) work duration before rises in core temperature exceeded 1 °C or volitional termination in environments above ACGIH limits. Although further studies are needed, these findings indicate that for the purpose of mitigating rises in core temperature exceeding recommended limits (>1 °C), ACGIH guidelines have comparable effectiveness in non-heat acclimatized men and women during moderate-intensity work. Novelty: Sex did not appreciably influence thermal strain nor the proportion of participants with core temperatures exceeding recommended limits. Sex did not significantly influence tolerance to uncompensable heat stress. Despite originating from data obtained in only men, current occupational heat stress guidance offered comparable effectiveness in men and women.


Assuntos
Transtornos de Estresse por Calor , Exposição Ocupacional , Termotolerância , Temperatura Corporal/fisiologia , Feminino , Transtornos de Estresse por Calor/prevenção & controle , Temperatura Alta , Humanos , Masculino , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise
14.
J Appl Physiol (1985) ; 132(4): 995-1004, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35238651

RESUMO

Heat-stress-induced dehydration is associated with extracellular hyperosmolality. To counteract the associated stress, cells employ cytoprotective mechanisms, including autophagy; however, the autophagic response to hyperosmotic stress has yet to be evaluated in humans. Thus, we investigated autophagy and associated cellular stress pathways [the heat shock response (HSR), apoptosis, and the acute inflammatory response] to isosmotic and hyperosmotic conditions with and without hyperthermia in 12 young men (mean [SD]; 25 [5] yr). Participants received a 90-min intravenous infusion of either isosmotic (ISO; 0.9% NaCl; serum osmolality of 293 [4] mosmol/kgH2O) or hyperosmotic (HYP; 3.0% NaCl; 300 [6] mosmol/kgH2O) saline, followed by passive whole body heating using water perfused suit to increase esophageal temperature by ∼0.8°C. Peripheral blood mononuclear cells were harvested at baseline (preinfusion), postinfusion, and after heating, and changes in protein content were analyzed via Western blotting. Post infusion, the LC3-II/I ratio was higher in HYP compared with ISO infusion (P < 0.001), although no other protein changes were observed (all P > 0.050). Following passive heating, autophagy increased in HYP, as demonstrated by an increase in LC3-II from baseline (P = 0.004) and an elevated LC3-II/I ratio compared with ISO (P = 0.035), and a decrease in p62 when compared with the ISO condition (P = 0.019). This was accompanied by an elevation in cleaved caspase-3 following heating in the HYP condition (P < 0.010); however, the HSR and acute inflammatory response did not change under any condition (all P > 0.050). Taken together, our findings indicate that serum hyperosmolality induces autophagy and apoptotic signaling during mild hyperthermia with minimal autophagic activation during normothermia.NEW & NOTEWORTHY We demonstrate that a physiologically relevant increase in serum osmolality causes minimal activation of the autophagic response. However, the combined stressors of serum hyperosmolality and mild hyperthermia causes activation of both autophagy and apoptotic signaling. Thus, changes in osmotic homeostasis appear to influence the cell's cytoprotective ability during periods of heat stress, highlighting the importance of considering osmotic status when examining autophagic responses in vivo.


Assuntos
Transtornos de Estresse por Calor , Hipertermia Induzida , Autofagia , Transtornos de Estresse por Calor/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Masculino
15.
Am J Physiol Regul Integr Comp Physiol ; 322(4): R326-R335, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35170329

RESUMO

The objective of this study was 1) to examine pooled effects of hypertension on nitric oxide (NO)-dependent vasodilation during local heating across multiple nonglabrous skin regions, and 2) explore regional differences. Responses were compared between 14 participants with uncomplicated hypertension controlled with medication (7 females, 61 ± 6 yr) and 14 age-matched nonhypertensive controls (6 females; 60 ± 5 yr). Cutaneous vascular conductance, normalized to maximum vasodilation (%CVCmax), was assessed at the upper chest, abdomen, dorsal forearm, thigh, and lateral calf during local heating. Across all regions, local skin temperatures were simultaneously increased from 33°C to 42°C (1°C·10 s-1) and held until a stable heating plateau was achieved (∼40 min), followed by continuous infusion of 20 mM of NG-nitro-l-arginine methyl ester (l-NAME; ∼40 min) at all sites until a stable l-NAME plateau was achieved. The difference between heating and l-NAME plateaus was defined as the NO-contribution. Statistical equivalence for each heating phase was determined based on equivalence bounds of ±10%CVCmax for between-group differences. Pooled (all-regions) %CVCmax responses were equivalent for baseline (two one-sided t tests; P < 0.001), heating plateau (P = 0.002), l-NAME plateau (P = 0.028), and NO-contribution (P = 0.003). For individual regions, responses were equivalent at baseline for the abdomen, thigh, and calf, the heating plateau for the thigh, and the l-NAME plateau for the calf (all P < 0.05). Conversely, the calf heating plateau was lower in the hypertension group (t test; P < 0.05). Local heat-induced cutaneous vasodilation was statistically equivalent between individuals with uncomplicated, controlled hypertension, and nonhypertensive age-matched adults when pooled across multiple skin sites. Conversely, individual between-region comparisons were generally too variable to permit definitive conclusions.


Assuntos
Hipertensão , Vasodilatação , Adulto , Inibidores Enzimáticos/farmacologia , Feminino , Temperatura Alta , Humanos , Masculino , Microdiálise , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Fluxo Sanguíneo Regional/fisiologia , Pele/irrigação sanguínea
16.
Exp Physiol ; 107(5): 429-440, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35193165

RESUMO

NEW FINDINGS: What is the central question of this study? What are the profiles of acute physiological and psychophysical strain during and in recovery from different modes of heating, and to what extent do these diminish after repeated exposure? What is the main finding and its importance? Mode of heating affects the strain profiles during heat stress and recovery. Exercise in the heat incurred the greatest cardiovascular strain during heating and recovery. Humid heat was poorly tolerated despite heat strain being no greater than in other heating modes, and tolerance did not improve with multiple exposures. ABSTRACT: Heat stress is common and arises endogenously and exogenously. It can be acutely hazardous while also increasingly advocated to drive health and performance-related adaptations. Yet, the nature of strain (deviation in regulated variables) imposed by different heating modes is not well established, despite the potential for important differences. We, therefore, compared three modes of heat stress for thermal, cardiovascular and perceptual strain profiles during exposure and recovery when experienced as a novel stimulus and an accustomed stimulus. In a crossover design, 13 physically active participants (five females) underwent 5 days of 60-min exposures to hot water immersion (40°C), sauna (55°C, 54% relative humidity) and exercise in the heat (40°C, 52% relative humidity), and a thermoneutral water immersion control (36.5°C), each separated by ≥4 weeks. Physiological (thermal, cardiovascular, haemodynamic) and psychophysical strain responses were assessed on days 1 and 5. Sauna evoked the warmest skin (40°C; P < 0.001) but exercise in the heat caused the largest increase in core temperature, sweat rate, heart rate (post hoc comparisons all P < 0.001) and systolic blood pressure (P ≤ 0.002), and possibly decrease in diastolic blood pressures (P ≤ 0.130), regardless of day. Thermal sensation and feeling state were more favourable on day 5 than on day 1 (P ≤ 0.021), with all modes of heat being equivalently uncomfortable (P ≥ 0.215). Plasma volume expanded the largest extent during immersions (P < 0.001). The current data highlight that exercising in the heat generates a more complex strain profile, while passive heat stress in humid heat has lower tolerance and more cardiovascular strain than hot water immersion.


Assuntos
Transtornos de Estresse por Calor , Temperatura Alta , Aclimatação/fisiologia , Temperatura Corporal , Regulação da Temperatura Corporal/fisiologia , Estudos Cross-Over , Feminino , Frequência Cardíaca/fisiologia , Resposta ao Choque Térmico , Humanos , Masculino , Água
17.
Exp Physiol ; 107(4): 337-349, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34957632

RESUMO

NEW FINDINGS: What is the central question to the study? Are primary indices of heat adaptation (e.g., expansion of plasma volume and reduction in resting core temperature) differentially affected by the three major modes of short-term heat acclimation, that is, exercise in the heat, hot water immersion and sauna? What it the main finding and its importance? The three modes elicited typical adaptations expected with short-term heat acclimation, but these were not significantly different between modes. This comparison has not previously been made and highlights that individuals can expect similar adaptation to heat regardless of the mode used. ABSTRACT: Heat acclimation (HA) can improve heat tolerance and cardiovascular health. The mode of HA potentially impacts the magnitude and time course of adaptations, but almost no comparative data exist. We therefore investigated adaptive responses to three common modes of HA, particularly with respect to plasma volume. Within a crossover repeated-measures design, 13 physically active participants (five female) undertook four, 5-day HA regimes (60 min/day) in randomised order, separated by ≥4 weeks. Rectal temperature (Tre ) was clamped at neutrality via 36.6°C (thermoneutral) water immersion (TWI; i.e., control condition), or raised by 1.5°C via heat stress in 40°C water, sauna (55°C, 52% relative humidity), or exercise in humid heat (40°C, 52% relative humidity; ExH). Adaptation magnitude was assessed as the pooled response across days 4-6, while kinetics was assessed via the 6-day time series. Plasma volume expansion was similar in all heated conditions but only higher than TWI in exercise in the heat (ExH) (by 4%, P = 0.036). Approximately two-thirds of the expansion was attained within the initial 24 h and was moderately related to that present on day 6, regardless of HA mode (r = 0.560-0.887). Expansion was mediated by conservation of both sodium and albumin content, with little evidence for these having differential roles between modes (P = 0.706 and 0.320, respectively). Resting Tre decreased by 0.1-0.3°C in all heated conditions, and systolic blood pressure decreased by 4 mmHg, but not differentially between conditions (P ≥ 0.137). In conclusion, HA mode did not substantially affect the magnitude or rate of adaptation in key resting markers of short-term HA.


Assuntos
Aclimatação , Temperatura Alta , Aclimatação/fisiologia , Adaptação Fisiológica , Exercício Físico/fisiologia , Feminino , Frequência Cardíaca/fisiologia , Humanos , Cinética
18.
Am J Physiol Regul Integr Comp Physiol ; 322(1): R1-R13, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34786980

RESUMO

Metaboreflex activation augments sweating during mild-to-moderate hyperthermia in euhydrated (isosmotic isovolemic) individuals. Recent work indicates that extracellular hyperosmolality may augment metaboreflex-mediated elevations in sympathetic nervous activity. Our primary objective was, therefore, to test the hypothesis that extracellular hyperosmolality would exacerbate metaboreflex-mediated increases in sweat rate. On two separate occasions, 12 young men [means (SD): 25 (5) yr] received a 90-min intravenous infusion of either 0.9% saline (isosmotic condition, ISO) or 3.0% saline (hyperosmotic condition, HYP), resulting in a postinfusion serum osmolality of 290 (3) and 301 (7) mosmol/kgH2O, respectively. A whole body water perfusion suit was then used to increase esophageal temperature by 0.8°C above resting. Participants then performed a metaboreflex activation protocol consisting of 90-s isometric handgrip exercise (40% of their predetermined maximum voluntary contraction), followed by 150 s of brachial occlusion (trapping produced metabolites within the limb). Metaboreflex-induced sweating was quantified as the change in global sweat rate (from preisometric handgrip exercise to brachial occlusion), estimated as the surface area-weighted average of local sweat rate on the abdomen, axilla, chest, bicep, quadriceps, and calf, measured using ventilated capsules (3.8 cm2). We also explored whether this response differed between body regions. The change in global sweat rate due to metaboreflex activation was significantly greater in HYP compared with ISO (0.03 mg/min/cm2 [95% confidence interval: 0.00, 0.06]; P = 0.047), but was not modulated by body region (site × condition interaction: P = 0.679). These findings indicate that extracellular hyperosmolality augments metaboreflex-induced increases in global sweat rate, with no evidence for region-specific differences.


Assuntos
Células Quimiorreceptoras/metabolismo , Metabolismo Energético , Hipertermia/fisiopatologia , Contração Isométrica , Músculo Esquelético/inervação , Solução Salina Hipertônica/administração & dosagem , Sudorese , Sistema Nervoso Simpático/fisiopatologia , Adulto , Humanos , Infusões Intravenosas , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Estado de Hidratação do Organismo , Pressão Osmótica , Adulto Jovem
19.
Appl Physiol Nutr Metab ; : 1-4, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34710340

RESUMO

During uncompensable occupational heat stress, heat-mitigation controls are required to prevent core temperature exceeding recommended limits (≥38 °C). However, the initial stay time before employing controls remained unknown. We estimated these times for moderate-intensity work at 26, 28, 30, and 32 °C wet-bulb globe temperatures (WBGT) in 50 young (18-30 years) and older (50-70 years), non-heat acclimatized men. Initial stay time was 111 min at 26 °C WBGT and declined exponentially to 44 min at 32 °C WBGT. Novelty: We provide estimates of the moderate-intensity work duration before heat-mitigation is required in wet-bulb globe temperatures between 26-32 °C for young and older, non-heat acclimatized men.

20.
Exp Physiol ; 106(8): 1671-1678, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34143517

RESUMO

NEW FINDINGS: What is the central question of this study? Are regional differences in nitric oxide (NO)-dependent cutaneous vasodilatation during local skin heating present in young adults? What is the main finding and its importance? NO-dependent cutaneous vasodilatation varied across the body. The abdomen demonstrated larger NO contributions, while the chest demonstrated smaller NO contributions, compared to other regions. This exploratory work is an important first step in characterizing regional heterogeneity of cutaneous microvascular control across the torso and limbs. Equally, it serves to generate hypotheses for future studies examining regional cutaneous microvascular control in ageing and disease. ABSTRACT: Regional variations in cutaneous vasodilatation during local skin heating exist across the body. While nitric oxide (NO) is a well-known modulator of this response, the extent of regional differences in NO-dependent cutaneous vasodilatation during local skin heating remains uncertain. In 16 habitually active young adults (8 females; 25 ± 5 years), cutaneous vascular conductance, normalized to maximum vasodilatation (% CVCmax ), was assessed at the upper chest, abdomen, dorsal forearm, thigh and lateral calf during local skin heating. Across all regions, local skin temperatures were simultaneously increased from 33 to 42°C (1°C per 10 s), and held until a stable heating plateau was achieved (∼40 min). Next, with local skin temperature maintained at 42°C, 20 mM of NG -nitro-l-arginine methyl ester (l-NAME) was continuously infused at each site until a stable l-NAME plateau was achieved (∼40 min). The difference between heating and l-NAME plateaus was identified as the NO contribution for each region. There was no evidence for region-specific responses at baseline (P = 0.561), the heating plateau (P = 0.351) or l-NAME plateau (P = 0.082), but there was for the NO contribution (P = 0.048). Overall, point estimates for between-region differences in the NO contribution varied across the body from 0 to 19% CVCmax . The greatest effects were observed for the abdomen, wherein the NO contribution was consistently greater than for the other regions (range: 9-19% CVCmax ). The chest was consistently lower than the other regions (range: 7-19% CVCmax ). The smallest effects were observed between limb regions (range: 0-2% CVCmax ). These findings advance our understanding of the mechanisms influencing regional variations in the cutaneous vasodilator response to local skin heating in young adults.


Assuntos
Óxido Nítrico , Vasodilatação , Feminino , Calefação , Humanos , Microdiálise , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/fisiologia , Fluxo Sanguíneo Regional , Pele/irrigação sanguínea , Fenômenos Fisiológicos da Pele , Vasodilatação/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...